
SISO Decoding of U-UV Codes

Changyu Wu †, Li Chen ‡
† School of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou, China

‡ School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China

Email: wuchy28@mail2.sysu.edu.cn, chenli55@mail.sysu.edu.cn

Abstract—U-UV structural coding with algebraic component
codes can provide competent error-correction performance
in the short-to-medium length regime. Constituted by BCH
component codes and its ordered statistics decoding (OSD),
the successive cancellation list (SCL) decoding of U-UV codes
can outperform that of polar codes. However, the current SCL
decoding is a soft-in hard-out (SIHO) process. Exploiting its
list decoding feature, this paper proposes a soft-in soft-out
(SISO) decoding for U-UV codes, providing the key technique
for the codes to be further engaged in an iterative system. The
proposal is designed based on the recursive structure of U-UV
codes and the list decoding feature for both the component and
the structural codes. Both the decoding complexity and its soft
information transfer characteristics are also shown.

Index Terms—U-UV codes, soft-in soft-out decoding, succes-
sive cancellation list decoding

I. INTRODUCTION

Future communications require ultra low-latency for which

the short-to-medium length channel codes will play an impor-

tant role. However, most modern codes such as turbo codes

[1], low-density parity-check (LDPC) codes [2] and polar

codes [3] realize their capacity-approaching performance

with a large codeword length. In the short-to-medium length

regime, BCH codes, tail-biting convolutional codes, non-

binary LDPC codes, polar codes, and the more recent po-

larization adjusted convolutional (PAC) codes [4] are known

to be good candidates [5]. Their error-correction competency

is often realized by a particular decoding mechanism, e.g.,

the successive cancellation list (SCL) decoding for polar

codes and the sequential decoding for the PAC codes. U-

UV structural codes were recently introduced as another good

performing short-to-medium length code [6]. It is constructed

by a number of small component codes under the U-UV

structure which was also known as the Plotkin structure

[7]. This structural coding results in polarized subchannel

capacities, so that rates of the component codes can be

designed accordingly. It has been shown that employing BCH

component codes and its ordered statistics decoding (OSD)

[8], the SCL decoding of U-UV codes outperforms that of

polar codes [6].

The SCL decoding is a soft-in hard-out (SIHO) process,

without providing the a posteriori probabilities (APPs) for

the codeword (or message) symbols. If the U-UV codes are

further concatenated, e.g., in coded modulations or code con-

catenations, iterative decoding would be desired. Therefore,

it is also important to design the soft-in soft-out (SISO)

decoding technique for the codes. SISO decoding of block

codes can be categorized into the trellis based approach [9],

[10], the belief propagation (BP) based approach [11]–[13]

and the list based approach [14]–[16], respectively. The trellis

based SISO decoding provides the optimal APPs, but its

complexity depends on the number of trellis states. For block

codes, this is exponential with codeword length, prohibiting

its practice. The BP based SISO decoding will be effective

only if the parity-check matrix of the code exhibits sparsity.

The list based SISO decoding lifts these dependencies on the

codes. The codeword symbol APPs can be generated by a list

of decoding estimations with their likelihood metrics.

Exploiting the nature of the SCL decoding, this paper pro-

poses the list based SISO decoding for the U-UV codes. The

symbol-wise a posteriori log-likelihood ratio (LLR) can be

determined by having a sufficiently large list of decoding es-

timations that also exhibit symbol plurality. It will be shown

that this can be ensured by the list decoding of component

codes and the U-UV code structure. We will show that the

a posteriori symbol LLR can be straightforwardly calculated

using the SCL decoding metrics. Decoding complexity will

be analyzed. The soft information transfer characteristics of

the SISO decoding will also be studied, demonstrating how

will reliability of the soft output be affected by the decoding

parameters. This work provides the key technique for U-UV

codes to be further engaged in a coded modulation or a code

concatenation system.

II. PRELIMINARIES

A. U-UV Codes

In this paper, we consider binary U-UV codes. Therefore,

it is assumed that the U code and V code are two binary block

codes of length n with dimensions kU and kV, respectively.

A U-UV code of length 2n and dimension kU + kV can be

constructed by [7]

{(cU|cU + cV) : cU ∈ CU, cV ∈ CV} . (1)

where CU and CV denote the codebooks of the U code and

the V code, respectively, and cU and cV are their codewords.

The above construction can be extended by involving more

component codes. Fig. 1 illustrates the construction of an h
levels U-UV code. It contains γ = 2h component codes with

an overall length of N = γn. This construction results in γ
subchannels that convey the component codes. They have

polarized capacities, based on which the component code

rates can be designed [3], [17]. Considering the finite length
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transmission limit, the component code rates can be more

precisely tuned by calculating the so called finite length rate

[18].

…

… …

Level 0

Level 1

Level ℎ

…

U codes
V codesU-UV codeword

Fig. 1. Construction of an h levels U-UV code.

The U-UV codes can also be viewed as generalized

concatenated codes (GCCs) [19]. Fig. 2 shows its GCC inter-

pretation. In particular, let C(i) and c(i) = (c
(i)
0 , c

(i)
1 , ..., c

(i)
n−1)

denote the ith component code and its codeword, respec-

tively, where i = 0, 1, ..., γ − 1. There are n polar codes

[3] of length γ as the inner codes. Input of the jth polar

encoder will be (c
(0)
j , c

(1)
j , ..., c

(γ−1)
j ), i.e., the jth codeword

symbol of all component codes. The U-UV codeword v is

obtained by cascading the output of the n polar encoders,

i.e., v = (v0, v1, ..., vγ−1, ..., vN−γ , vN−γ+1, ..., vN−1).

଴ݒ
 ఊିଵPolarݒ

Enc. 0 ଵݒ

ேିఊݒ
ேିଵݒ
ேିఊାଵܿ଴ఊିଵݒ

ܿ௡ିଵఊିଵ

ܿ଴଴
ܿ௡ିଵ଴

Polar 
Enc. ݊ − 1

Component 
Enc. 0

Component 
Enc. γ − 1

Fig. 2. The GCC interpretation of U-UV codes.

B. List Based SISO Decoding

This is demonstrated under the paradigm of a length n
dimension k binary code and the bipolar modulation. Let

c = (c0, c1, ..., cn−1) denote the transmitted codeword, and

x(c) denote the bipolar modulated symbol vector that is

generated by cj �→ x(cj) : {0, 1} �→ {1,−1}. It is assumed

that x(c) is transmitted through the additive white Gaussian

noise (AWGN) channel with a noise variance of σ2. With

the received symbol vector y = (y0, y1, ..., yn−1), an LLR

vector L can be obtained, whose entries are defined as

Lj = ln
P (yj |cj = 0)

P (yj |cj = 1)
, (2)

where

P (yj |cj) =
(
2πσ2

)− 1
2 e−

|yj−x(cj)|2
2σ2 (3)

is the symbol-wise channel transition probability. Based on

(2) and (3), Lj =
2yj

σ2 . Hence, P (yj |cj) can also be expressed

as

P (Lj |cj) =
(
2πσ2

)− 1
2 e−

|σ2

2
Lj−x(cj)|2

2σ2 . (4)

The vector-wise channel transition probability can be further

defined as

P (L|c) =
n−1∏
j=0

P (Lj |cj) =
(
2πσ2

)−n
2 e−

∑n−1
j=0

|σ2

2
Lj−x(cj)|2

2σ2 .

(5)

With an estimated codeword ĉ = (ĉ0, ĉ1, ..., ĉn−1), its likeli-

hood can be indicated by P (L|ĉ). We define

λ(ĉ,L) =
∑

j:Lj ·x(ĉj)<0

|Lj | (6)

as the correlation distance between ĉ and L. A smaller

λ(ĉ,L) indicates ĉ is more likely to be transmitted. Let

L = {ĉ} denote the list of decoding estimations and

b ∈ {0, 1}, we can further define

L(j, b) = {ĉ : ĉj = b, ĉ ∈ L} (7)

as a subset of L. It collects the decoding estimations with

their jth symbol being b. Hence, the symbol-wise a posteriori
LLR can be determined by

L′
j = ln

max
ĉ∈L(j,0)

P (ĉ|L)

max
ĉ∈L(j,1)

P (ĉ|L)
. (8)

Assuming all codewords are equally likely to be transmitted,

L′
j = ln

max
ĉ∈L(j,0)

P (L|ĉ)
max

ĉ∈L(j,1)
P (L|ĉ) . (9)

Therefore, in order to obtain the a posteriori LLR for each

codeword symbol, the list L shall be sufficiently large such

that L(j, b) is not empty for all j and b. This SISO decoding

approximates the outcome of the max-log-MAP decoding

[20].
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To generate a sufficiently large codeword list, the OSD

[8] remains the best known approach. It is characterized by

an order τ , where 0 ≤ τ ≤ k. Given L, the most reliable

basis (MRB) I that contains the k most reliable independent

positions is formed and |I| = k. The initial message mI
can be obtained by making hard-decisions on positions of

I . An order-τ reprocessing is performed based on mI . It

flips at most τ positions of mI at a time, producing a

new message and its corresponding codeword ĉ. Hence, the

decoding produces
∑τ

t=0

(
k
t

)
codeword candidates, each of

which is assigned with a likelihood metric of (6). The most

likely candidate

w = argmin
ĉ

λ(ĉ,L) (10)

will be chosen as the final codeword estimation.

The SISO-OSD [15] produces the a posteriori LLR of (9)

based on a list L. In order to ensure L(j, b) is not empty for

all j and b so that (9) can be computed for each codeword

symbol, the SISO-OSD requires more reprocessing. L is

initialized with w obtained by the OSD. Let Ij = I\j so

that |Ij | = k − 1, and wIj denote the message vector with

decisions on I being the same as those in w but only wj

flipped. For each j ∈ I , an order-τ reprocessing will be

performed based on Ij and with wIj
as the initial message.

All new codeword candidates generated in these extra repro-

cessing are included in L. This mechanism guarantees that

L(j, b) is not empty for any j and b. That says both ĉj = 0
and ĉj = 1 will appear in at least one candidate of L. It also

enlarges the cardinality of L so that the reliability of the a
posteriori LLRs is improved. For notation convenience, let

ĉ(j, b) denote the most likely candidate in L(j, b) so that L′
j

of (9) can be determined as

L′
j = ln

P (L|ĉ(j, 0))
P (L|ĉ(j, 1)) . (11)

The correlation distance between ĉ(j, b) and L is denoted

as λ(j, b). At the end of the decoding, the a posteriori
LLR vector L′ = (L′

0, L
′
1, ..., L

′
n−1) can be obtained. The

SISO-OSD algorithm with parameter τ is summarized as in

Algorithm 1.

III. SCL DECODING OF U-UV CODES

This section revisits the SCL decoding of U-UV codes,

which underpins the proposed SISO decoding. Parameterized

by a decoding output list size l, the SCL decoding generates

a list of U-UV codeword estimations. It can be illustrated

under the GCC paradigm of Fig. 2. Assume that a U-UV

codeword v of length N is transmitted and the received

LLR vector is L. It will be equally partitioned into n
LLR subvectors, which are the input of the n inner SC

decoders [3]. The inner decoders can function in parallel

and estimate their message symbol LLRs successively. Once

the ith message symbol LLRs of all inner codes have been

Algorithm 1 SISO-OSD

Input: L, τ ;

Output: L, L′;
1: Form the MRB I and the initial message mI ;

2: Perform OSD with order τ ;

3: Pick up w in creating L;

4: for each j ∈ I do
5: Determine Ij and wIj

;

6: Perform order-τ reprocessing based on Ij and wIj
,

enlarging L;

7: end for
8: for each j ∈ {0, 1, ..., n− 1} do
9: for each b ∈ {0, 1} do

10: Find ĉ(j, b) from L(j, b);
11: end for
12: Determine L′

j as in (11);

13: end for

produced, they are collected in forming an LLR vector L(i),

which is the input of the ith component decoder. Corre-

spondingly, the γ component codes are decoded successively.

After component code C(i) is decoded, codeword estimation

ĉ(i) = (ĉ
(i)
0 , ĉ

(i)
1 , ..., ĉ

(i)
n−1) will be fed back to the n inner

decoders for further LLR update. The inner decoders and

component decoders exchange their decoding output in such

a manner until all component codes are decoded. At the end,

a U-UV codeword estimation v̂ is obtained.

If the component codes are decoded by a list decoding

algorithm, e.g. the OSD, the SCL decoding of U-UV codes

can be designed. Let Li denote the decoding output list of

the ith component code, i.e.,

Li =
{
ĉ
(i)
0 , ĉ

(i)
1 , ..., ĉ

(i)
l−1

}
, (12)

where |Li| = l. In the SCL decoding process, multiple

decoding paths are maintained. With one initial path at the

beginning, path expansion will be performed each time after

a component code is decoded. An existing path will branch

into l separate paths, each of which is emancipated from a

candidate of Li. This will result in an exponentially growing

number of decoding paths, triggering a prohibitive com-

plexity. In order to rationalize the complexity, path pruning

following each path expansion will be necessary. That says

after a component code is decoded, only the l most reliable

expanded paths will be preserved. For this, we define the

accumulated correlation distance as

Λ(i) = λ(ĉ(0),L(0)) + λ(ĉ(1),L(1)) + · · ·+ λ(ĉ(i),L(i)).
(13)

It indicates the reliability of a decoding path that reaches

component code C(i). A smaller Λ(i) indicates the decoding

path is more reliable. After the last component code is

decoded, each of the l decoding paths corresponds to a U-UV
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codeword estimation with a likelihood metric Λ(γ−1). These

codeword estimations are kept in the SCL decoding output

list L, and the most likely one within is normally chosen as

the decoding output.

IV. SISO DECODING OF U-UV CODES

Armed with the above mentioned SCL decoding of U-UV

codes, its SISO decoding can be further derived. Given a list

of decoding estimations L = {v̂}, we again define

L(j, b) = {v̂ : v̂j = b, v̂ ∈ L} (14)

as a subset of L, where b ∈ {0, 1} and j ∈ {0, 1, ..., N − 1}.

It collects all decoding estimations with the jth symbol being

b. Based on (9), the a posteriori LLR of vj can be generated

by

L′
j = ln

max
v̂∈L(j,0)

P (L|v̂)
max

v̂∈L(j,1)
P (L|v̂) . (15)

Again, it should be ensured that L(j, b) is not empty for all

j and b so that (15) can be computed for each codeword

symbol. This can be guaranteed by utilizing the U-UV code

structure and the SCL decoding.

For the SCL decoding, the reliability of a decoding path

is evaluated by the accumulated correlation distance Λ(γ−1)

as in (13). Given an estimated U-UV codeword v̂, we use

ĉ(i)(v̂) to denote its ith component codeword. Assume all

component codeword estimations are independent such that

P (L|v̂) =
γ−1∏
i=0

P (L(i)|ĉ(i)(v̂)). (16)

Subsequently, L′
j of (15) can be approximated as

L′
j ≈ ln

max
v̂∈L(j,0)

∏γ−1
i=0 P (L(i)|ĉ(i)(v̂))

max
v̂∈L(j,1)

∏γ−1
i=0 P (L(i)|ĉ(i)(v̂)) . (17)

Note that the successive decoding mechanism implies that

L(i) will be computed based on the previous component

codeword estimations ĉ(0), ĉ(1), ..., ĉ(i−1). However, we ap-

ply the assumption of (16) and yield an approximation for

L′
j as in (17). This is consistent with the SCL decoding

metric, since intermediate reliability metric for decoding path

selection is necessary. Based on (13), let us further define

Λ(v̂) =

γ−1∑
i=0

λ(ĉ(i)(v̂),L(i)) (18)

as the likelihood metric for an estimated U-UV codeword v̂.

Based on (5), (6) and (17), the a posteriori LLR approxima-

tion can be determined by

L′
j ≈ min

v̂∈L(j,1)
Λ(v̂)− min

v̂∈L(j,0)
Λ(v̂). (19)

The above equation shows that the a posteriori LLR can be

straightforwardly determined by calculating the discrepancy

between two accumulated correlation distances, i.e., the SCL

decoding metrics. However, we should still guarantee that

L(j, b) is not empty for all j and b. The following shows

that with the U-UV structure, this can be substantiated

by performing the SISO-OSD on the last component code

C(γ−1).

In estimating a U-UV codeword using the SCL decod-

ing, let us consider that component codeword estimations

ĉ(0), ĉ(1), ..., ĉ(γ−2) have been produced with the accumu-

lated correlation distance Λ(γ−2). Based on the U-UV struc-

ture, the last component estimation ĉ(γ−1) will uniquely

determine the U-UV codeword estimation v̂. That says they

exhibit a one-to-one correspondence. Therefore, we can guar-

antee that L(j, b) is not empty for all j and b by producing

ĉ(γ−1)(v̂) that enables v̂j = b.

With the LLR vector L(γ−1) and the estimated component

codewords ĉ(0), ĉ(1), ..., ĉ(γ−2), let

ĉ(γ−1)(j, b) = argmin
ĉ(γ−1)(v̂):v̂∈L(j,b)

λ(ĉ(γ−1)(v̂),L(γ−1)) (20)

denote the most likely estimation of the last component

code that constitutes a candidate in L(j, b). Its correla-

tion distance with L(γ−1) is denoted by λ(γ−1)(j, b), i.e.,

λ(γ−1)(j, b) = λ(ĉ(γ−1)(j, b),L(γ−1)). Based on II-B, the

SISO-OSD is able to ensure the existence of both ĉ(γ−1)(j, 0)
and ĉ(γ−1)(j, 1) for all U-UV codeword position j. There-

fore, in the proposed SISO decoding, the component codes

C(0), C(1), ..., C(γ−2) can be decoded by the OSD with their

respective orders, but the last component code C(γ−1) will

have to be decoded by the SISO-OSD.

Let us further define

Λ(j, b) = Λ(γ−2) + λ(γ−1)(j, b) (21)

as the decoding metric of a complete path. With the SCL

decoding mechanism, after component code C(γ−2) is de-

coded, l most reliable decoding paths are preserved with their

metrics Λ(γ−2). After the SISO-OSD of the last component

code C(γ−1), path metrics sets {Λ(j, b)} are obtained for all

j and b. Based on (19), the a posteriori LLR for a U-UV

codeword symbol vj can be determined by

L′
j = min {Λ(j, 1)} −min {Λ(j, 0)} . (22)

Note that the most reliable decoding path must be involved in

the calculation of L′
j for each j. Consequently, at most N+1
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U-UV codeword estimations will be utilized in evaluating

the a posteriori LLR vector L′ = (L′
0, L

′
1, ..., L

′
N−1). The

extrinsic LLR for symbol vj can be further determined by

L′′
j = L′

j − Lj .

The SISO decoding of U-UV codes is summarized as

in Algorithm 2. Note that the OSD orders for different

component codes may vary. We use τi to denote the OSD

order for the ith component, and τ = {τ0, τ1, ..., τγ−1}.

Algorithm 2 SISO Decoding of U-UV Codes

Input: L, τ , l;
Output: L′;

1: Initialize a decoding path;

2: for each i ∈ {0, 1, ..., γ − 2} do
3: for each decoding path do
4: Run the inner decoders in producing L(i);

5: Perform OSD-τi to obtain Li as in (12);

6: Perform path expansion based on Li;

7: Compute Λ(i) for each expanded path as in (13);

8: end for
9: Keep the l most reliable paths;

10: end for
11: for each decoding path do
12: Run the inner decoders in producing L(γ−1);

13: Perform the SISO-OSD with order τγ−1 in obtaining

ĉ(γ−1)(j, b) and λ(γ−1)(j, b) for all j and b;
14: for each j ∈ {0, 1, ..., N − 1} do
15: Calculate Λ(j, 0) and Λ(j, 1) as in (21);

16: end for
17: end for
18: Calculate L′ as in (22);

V. DECODING COMPLEXITY

The above SISO decoding complexity can be characterized

by considering the SC decoding of inner polar codes, the

OSD of component codes C(0), C(1), ..., C(γ−2) and the SISO-

OSD of C(γ−1). Since the n inner polar codes are of length

γ and there are l decoding paths, the LLR update complexity

of the inner decoders is O(lnγ log2 γ) = O(lNh). The

complexity of an order τ OSD is O(nτ ). Since it is used to

decode component codes C(0), C(1), ..., C(γ−2), its complexity

is O(lnτm), where τm = max {τ0, τ1, ..., τγ−2}. The SISO-

OSD of the last component code C(γ−1) can be considered as

performing the order τγ−1 OSD for k′+1 times, where k′ is

the dimension of C(γ−1). Since the subchannel that conveys

c(γ−1) exhibits the largest capacity among all, it is usually

true that k′ � 1. Hence, the complexity of decoding the last

component code will be O(lk′nτγ−1). Compared with the

SCL decoding of U-UV codes [6], the SISO decoding costs

a higher complexity due to its extra reprocessing in decoding

C(γ−1).

VI. PERFORMANCE ANALYSIS

The a priori-a posteriori (and -extrinsic) information trans-

fer characteristics of the proposed SISO decoding will first

௔ܫ → ௔ܫ௣ܫ → ௘ܫ
௔ܫ

ܫ ௣/ܫ ௘

݈ = 1݈ = 2݈ = 4݈ = 8݈ = 16

Fig. 3. Soft information transfer characteristics of SISO decoding of the
(252,139) U-UV code, with OSD orders τ = {7, 2, 2, 0}.

௔ܫ → ௔ܫ௣ܫ → ௘ܫ
௔ܫ

ܫ ௣/ܫ ௘
݈ = 1݈ = 2݈ = 4݈ = 8݈ = 16

Fig. 4. Soft information transfer characteristics of SISO decoding of the
(252,139) U-UV code, with OSD orders τ = {7, 3, 2, 1}.

be analyzed. Assuming that the U-UV codeword symbols

of 0 and 1 are equally likely to be transmitted, the mutual

information between the transmitted bipolar symbols x(v)
and the corresponding received LLRs L is defined as [21]

I(x(v), L) = H(x(v))−H(x(v)|L)
= 1−

∫ +∞

−∞
P (L|x(v) = 1) log2

(
1 + e−L

)
dL,

(23)

where H(·) is the binary entropy function. After the SISO

decoding, both the a posteriori LLR L′ and the extrinsic

LLR L′′ can be obtained. Hence, I(x(v), L′) and I(x(v), L′′)
can be evaluated. For simplicity, let Ia = I(x(v), L), Ip =
I(x(v), L′) and Ie = I(x(v), L′′), denote the a priori, the a
posteriori and the extrinsic mutual information, respectively.

The Ia → Ip and Ia → Ie transfer characteristics can be

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 08,2022 at 08:00:55 UTC from IEEE Xplore.  Restrictions apply. 



obtained via Monte-Carlo simulations. Note that the received

LLRs can be generated based on a predefined Ia assuming

an all-zero codeword is transmitted. As the SISO decoding

yields L′ and L′′, Ip can be determined by

Ip = 1− E

⎡
⎣ 1

N

N−1∑
j=0

log2(1 + e−L′
j )

⎤
⎦ , (24)

while Ie can also be determined similarly.

Figs. 3 and 4 show the a priori-a posteriori (and -extrinsic)

transfer characteristics of SISO decoding of the 2 levels

(252,139) U-UV code. Its component codes C(0), C(1), C(2)

and C(3) are the (63, 7), (63, 36), (63, 39) and (63, 57)

binary primitive BCH codes, respectively. They show the

transfer characteristics obtained with different OSD orders,

which are τ = {7, 2, 2, 0} and τ = {7, 3, 2, 1}, respectively.

It can be seen that by increasing the decoding parameters,

e.g., the OSD orders for the component codes or the list size

l, a better Ia → Ip or Ia → Ie transfer characteristics can be

obtained.

Finally, Fig. 5 shows the SISO decoding performance for

the U-UV code with τ = {7, 3, 2, 1}. It maintains the same

performance as the SCL decoding [6]. The U-UV codes can

outperform a similar rate and length polar code, i.e., the (256,

140) polar code whose SCL decoding [22], [23] is assisted

by a length 8 cyclic redundancy check (CRC) code.

U-UV, SISO = 1
U-UV, SISO = 2
U-UV, SISO = 4
U-UV, SISO = 8
U-UV, SISO =16   
CA polar, SCL-2   
CA polar, SCL-4   
CA polar, SCL-8   
CA polar, SCL-16   

/ 0 (dB)

Fig. 5. SISO decoding performance of the (252, 139) U-UV code.

VII. CONCLUSION

This paper has proposed the SISO decoding for U-UV

codes utilizing the list decoding feature of its original SCL

decoding. It has been shown that the a posteriori and extrinsic

LLRs of the codeword symbols can be generated by the

likelihood functions of particular estimated codewords. For

this, the SISO-OSD is recommended to decode the last

component code, while other component codes can be de-

coded by the OSD. Therefore, the SISO decoding complexity

is incremental to the SCL decoding in handling the last

component code. Soft information transfer characteristics

of the proposed SISO decoding has been analyzed. It has

also been shown that the SISO decoding maintains the SCL

decoding performance. This work paves the way for U-UV

codes to be further engaged in iterative systems.
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